Operation of SOFCs With Practical Hydrocarbon Fuels

Jiang Liu, Brian Madsen, Zhongliang Zhan, and Scott Barnett

Northwestern University

SECA Core Technology Program
Department of Energy: NETL & PNNL

R&D Objectives I

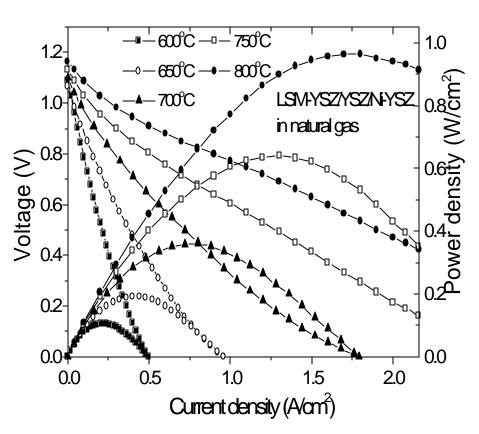
- Determine conditions where Ni-YSZ anodes operate reliably and coke-free with methane
 - Direct methane SOFC
 - Minimize pre-reforming requirements
 - Steam content
 - Volume of pre-reformer
 - Determine anode reactions with methane
- Test methods for removing coke
 - PO₂ range where C oxidizes and Ni remains metallic

R&D Objectives II

- Methods for improving redox and sulfur tolerance
 - Ni-YSZ: alter composition of electrolyte/anode interface
 - Ceramic-based anodes: alternate catalyst to Ni
- Reduce or eliminate anode Ni to allow operation with higher hydrocarbons
 - Ceramic-based anodes

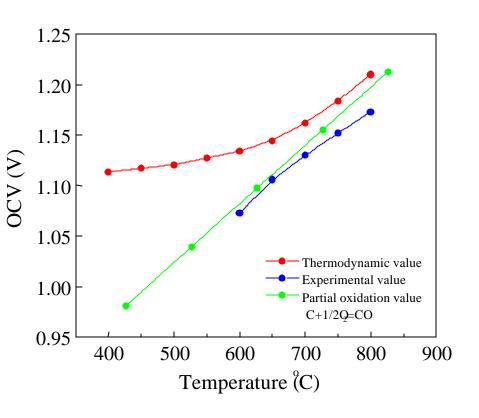
Technical Approach

- Materials systems
 - Ni-YSZ with methane and natural gas
 - Ceramic-based anodes with propane, butane, etc.
- Experimental approach
 - Fuels ranging from pure to dilute hydrocarbons (simulating partially reformed fuel)
 - Techniques:
 - Impedance spectroscopy and single-cell testing
 - Anode product gas analysis
 - Open-circuit voltage measurements
 - Thermodynamic and kinetic modeling of anode reactions

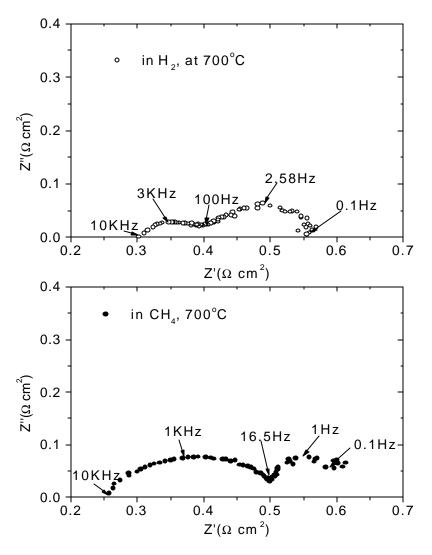

Results to Date

Ni-based anodes: methane and natural gas

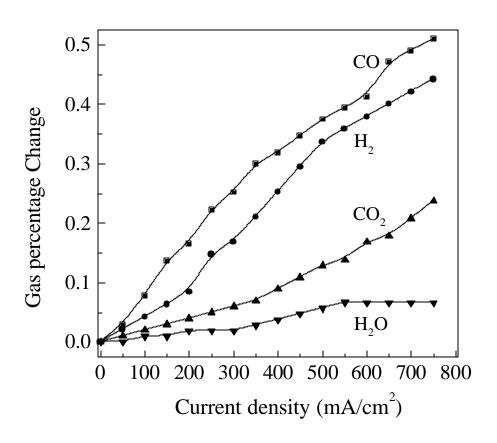
- SOFC results
- Open circuit voltages
- Impedance spectroscopy
- Anode gas analysis
- Coking observations
- Ceramic-based anodes: propane and other fuels
 - SOFC results
 - Thermodynamic calculation: e.g. propane
 - Redox cycling


Single-Cell Test: Natural Gas

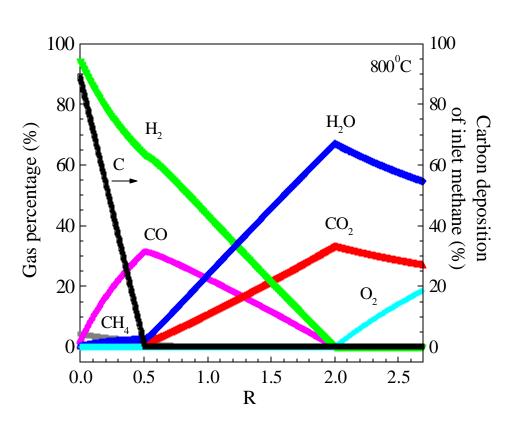
Ni-YSZ / YSZ / LSM-YSZ


- Tested in air and humidifed sulfur-free natural gas
- $\approx 1 \text{ W/cm}^2 \text{ at } 800\text{C}$
- Results similar for pure methane
- 80-90% of power densities with H₂
- OCV increases with increasing T

Methane OCV: Experimental vs Nernst Equation


- Inlet fuel: $97\%CH_4 + 3\%H_2O$
- ≥ 700C: Agrees with equilibrium calculation
 - 25 mV deviation same as for H₂ OCV
- <700C: deviation from equilibrium calculation
 - Non-equilibrium gas composition?
 - Agrees with C partial oxidation over full T range
- Does not agree with direct methane oxidation

Impedance Spectra: H₂ vs CH₄


- Measured at open circuit
- Higher frequency arc:
 - Increased from $\sim 0.1 \Omega \text{cm}^2$ (H₂) to $\sim 0.3 \Omega \text{cm}^2$ (CH₄)
 - Frequencies agree with anode/electrolyte/anode samples
 - Conclusion: anode arc
- Low-frequency arc decreases slightly for CH₄
 - Probably cathode arc
 - Measurement interaction?

Product Gas Composition

- Test temperature: 800°C
- H₂ and CO are main products
 - Agrees with equilibrium calc
 - H₂ should be higher mass spec sensitivity problem
 - Electrochemical partial oxidation
- Concentration changes are small due to small fuel utilization

Equilibrium Calculation: Methane-Oxygen Mixture

 $R = O_2$ -to- CH_4 ratio

- R < 0.5:
 - Carbon deposition
 - C, CO, and H₂ main products
- R > 0.5:
 - No carbon
 - H₂O and CO₂ increase
- Comparison with experiment
 - -R < 0.05
 - CO high and increases: agrees
 - H₂ high: agrees (trend disagrees)
 - H₂O and CO₂ low: agrees
 - Very little coking: disagrees

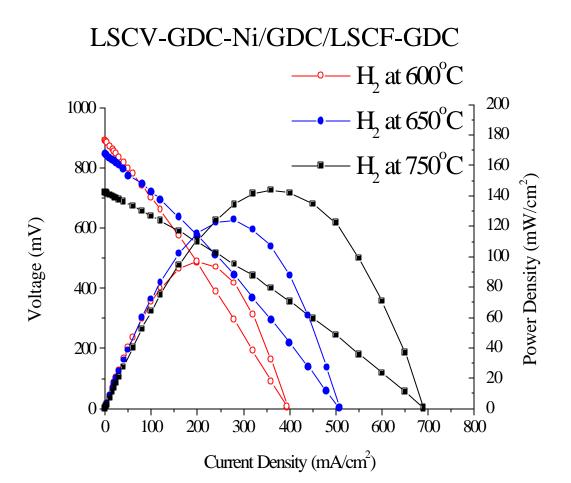
Why is coking suppressed?

- Local equilibrium?
 - Overall O₂-to-CH₄ ratio R ~ 0.05 → coking
 - Based on total CH₄ flow
 - But consider region within anode:
 - Local R value actually >0.5 (non-coking) if <10% of methane actually enters anode
 - We are developing a kinetic calculation to consider this

Results to Date

Ni-based anodes: methane and natural gas

- SOFC results
- Open circuit voltages
- Impedance spectroscopy
- Anode gas analysis
- Coking observations

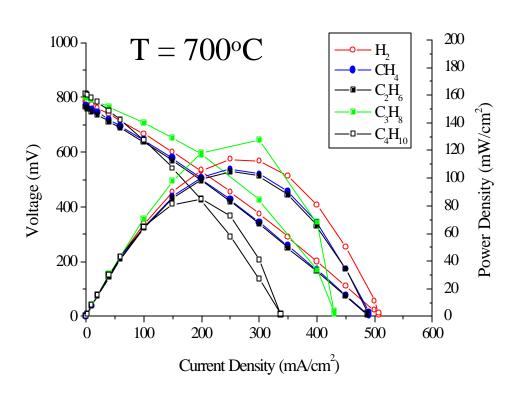

Ceramic-based anodes: propane and other fuels

- SOFC results
- Thermodynamic calculation: e.g. propane
- Redox cycling

SOFC Implementation

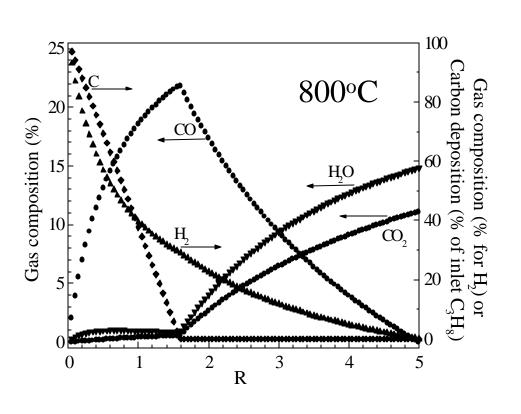
- Anode
 - Electronic conductor (~ 48 %):
 - $La_{0.8}Sr_{0.2}Cr_{0.8}Mn_{0.2}O_3$ (LSCM)
 - $La_{0.80}Sr_{0.20}Cr_{0.98}V_{0.02}O_3$ (LSCV)
 - $Sr_{0.86}Y_{0.08}TiO_{3-\delta}(SYT)$
 - Ionic conductor (~ 48 % Ce_{0.9}Gd_{0.1}O_{1.95} (GDC))
 - Electrochemical catalyst (4% Ni)
- Electrolyte (GDC, ~0.5 mm thick)
- Cathode (LSCF-GDC)

SOFC Performance vs T: H₂



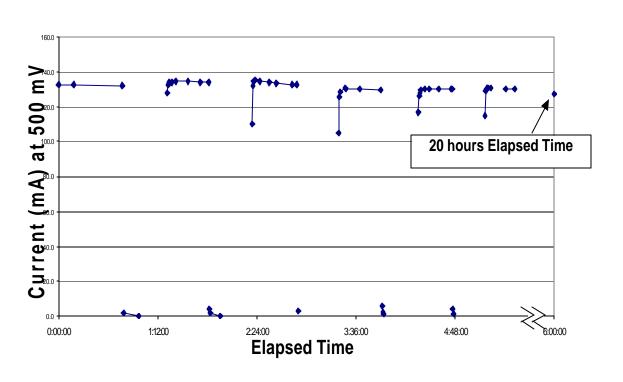
• With increasing T:

- OCV, resistance decreases
 - 1.05 V at 500°C
- power increases
 - ~0.10 W/cm² at 600°C
 - ~0.15 W/cm² at 750°C
- Impedance spectra: 60-75% of resistance from bulk GDC


Performance With Various Fuels

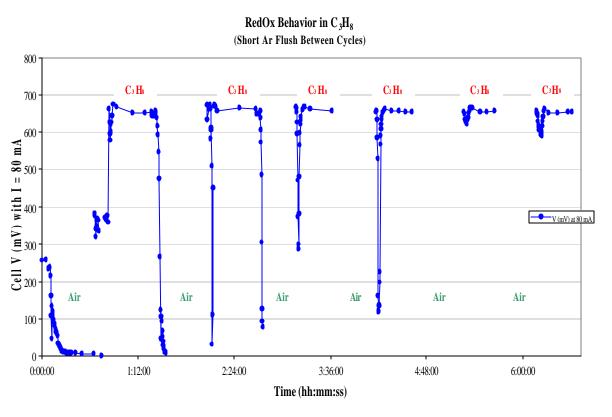
LSCV-GDC-Ni/GDC/LSCF-GDC

- Similar performance with H₂,
 CH₄, C₂H₆, C₃H₈, C₄H₁₀
- Cell performance degraded slightly over several days
 - Fuel performance variations partly due to timing
 - Propane tested earlier
 - Butane tested later
- Limiting current for heavier molecules: gas diffusion?


Equilibrium Reaction Products: Propane-Air

 $R = O_2$ -to- C_3H_8 ratio

- •R < 1.5:
 - -Carbon deposition
 - –CO and H₂ main gaseous products
- •R > 1.5:
 - -No carbon
 - -H₂O and CO₂ dominate
- Comparison with experiment
 - -R < 0.05 in experiments
 - –Well within coking range


Hydrogen-Air Cycling

- •Cell current at constant voltage
- •700°C, humidified 5% H₂ (in Ar) or air
- •Good stability through six redox cycles

Propane-Air Cycling

(Reduction-Oxidation at 700°C)

- •Cell voltage at constant current (200 mA/cm²)
- •1 hour period
- •Gas lines purged with Ar may explain transients
- •No degradation of performance after many cycles

Conclusions: Ceramic Anodes

- Work well with $C_1 C_4$ alkanes tested thus far
- >500h stable operation in cell test with many different fuels, redox cycles, etc.
- No degradation during many redox cycles
- Power densities low limited by thick GDC electrolyte
 - Anode polarization resistance is acceptable
 - Ceramic anode supported cells should provide high power densities

Applicability to SOFC Commercialization

- Understanding of methane reactions on Ni-YSZ
 - Basic information for partial pre-reforming where substantial hydrocarbons are present at anode
 - Potential future direct-methane SOFCs
 - Methods for removing coke from stacks
- Ceramic-based anodes
 - Understanding of anode reactions
 - Coking resistance in higher hydrocarbons useful for some applications, e.g transportation, portable
 - Redox cycling tolerance can simplify stack design, improve reliability

Future Activities

- Further studies of reactions with Ni-YSZ
 - Full mapping of coking versus current, gas composition
 - Identify methane oxidation mechanism
 - Verify coke cleanup procedures
 - Sulfur tolerance observations
 - Redox cycling studies
- Improve understanding of ceramic anodes
 - Effect of catalyst metal composition, amount
 - Effect of ionic conductor
 - Possible titanate/chromite reactions with YSZ
- Verify potential of ceramic anodes to achieve high power density
 - Fabricate ceramic anode supported cells